I've had a look at the 2 traces.
On both traces long term trims (Ltft's) are a little higher than what I'd expect but I dunno if the 14% would be high enough to cause an OBD code in itself. There's nothing to show engine load in the traces (the tool could be set to show RPM / throttle position / calculated load / etc). Were the driving conditions during the traces the same conditions that cause the codes? Also Ltft's by themselves don't indicate mixture or what the fuel system is doing to try to correct mixture, to see that info we need Ltft's, Stft's and lambda equivalence ratios all on the same trace. Stft's normally steer the Ltft's over time but Stft's reach either extreme (say +25% / -25%) the ECU can interpreted that as a potential error condition during which the Ltft's are not steered by Stft's. So, say you've got a Ltft of +10% and a Stft of + 4%, over time that would steer the Ltft to +14% and the Stft would be zero. But if you've got Ltft of +10% and Stft of +25% the Ltft will remain at +10% and eventually the ECU will generate an error code. It might be a good idea, if possible with your scan tool, to do some traces showing all of the fields I've mentioned here.
Fuel pressure also has command pressure but I don't remember if command pressure is a field you can read with a scan tool. I'd normally expect fuel pressure to rise during high engine load on-boost conditions. But if fuel pressure is close to within command pressure I wouldn't expect much of a problem (at least not .. You reckon it should be 45psi during the trace conditions but if so, and if it only falls to 41, I wouldn't expect that to cause much of a problem (at least not during low engine load conditions). Behind the scenes the ECU compensates fuelling for fuel pressure, I don't know if the ECU has a table for fuel pressure petrol injector pulse duration compensation or calculates the compensation but the amount of necessary compensation for lower or higher than expected fuel pressure is quite simple - compare the square root of expected command pressure (45 is 6.708) and the square root of actual (read) pressure (41 is 6.403) and there's only a 4.8% difference of what a petrol injector would flow for any given pulse length with the lower than intended pressure. Even if there were no petrol injector pulse duration compensation for fuel pressure, with expected pressure of 45 and actual of 41 we'd only expect to see a 4.8% change in fuel trims. But behind the scenes the ECU will add that 4.8% onto petrol injector pulse duration and in theory (because of this compensation) the lower fuel pressure should therefore not be reflected in fuel trims at all. Normally on these engines if there is a fuel pressure issue the ECU will come up with specific error codes pointing to the fuel pressure problem.
You've done smoke / plenum leak tests.
Done a couple of traces already,
I'd advise doing some more traces with the extra fields as mentioned above and in various driving conditions.
Maybe do a compression test.
If all seems good from the above I'd reset adapted values (fuel trims), start the car and immediately go for a drive with mixed driving conditions whilst monitoring Ltft's, Stft's and equivalence ratios (like I mentioned in an earlier post).
Still no joy I'd be looking at the Maf, maybe compare voltage readings at warm idle and under other easily comparable conditions (such as 60mph cruise on level road) with someone else who has the same model vehicle.
I still wouldn't rule out the evap system despite the tests you've already done.